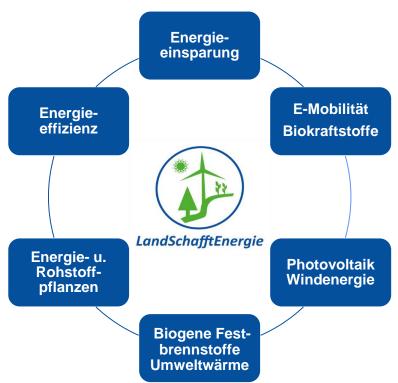


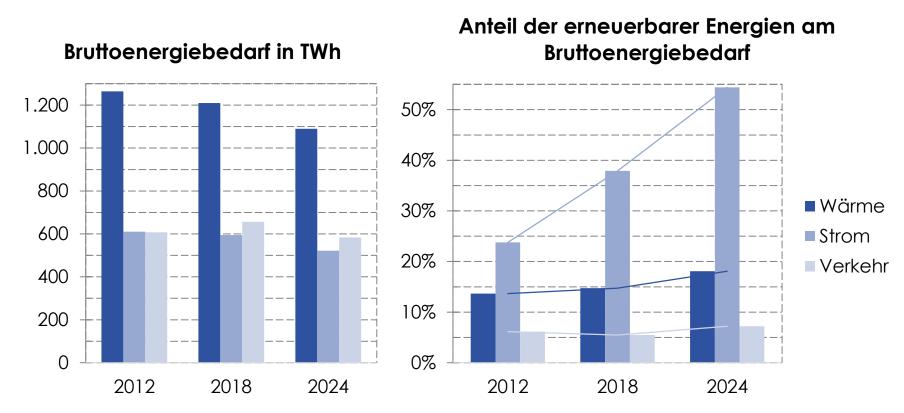
Den eigenen Solarstrom optimal nutzen

Pfaffenhofen an der Ilm, 21.10.2025

Rita Haas • Nachhaltige Mobilität Julian Müller • Solarenergie und Stromspeicher

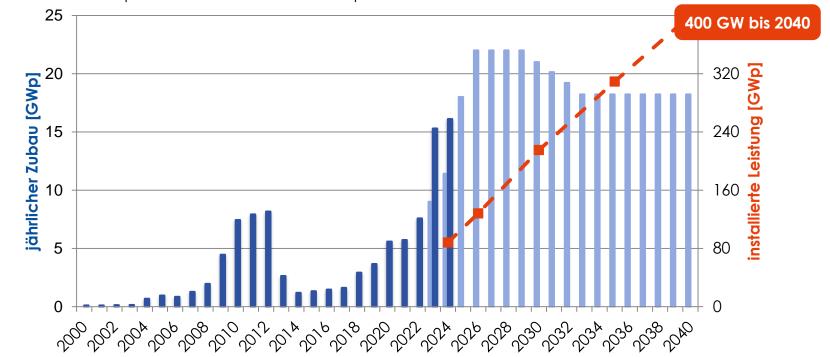


Beratung und Wissenstransfer


Was erwartet Sie heute?

- Photovoltaik Aktuelles und Rahmenbedingungen
- Stromspeicherung und Sektorenkopplung
- Sonne tanken Solarstrom für die Elektromobilität
- Fazit

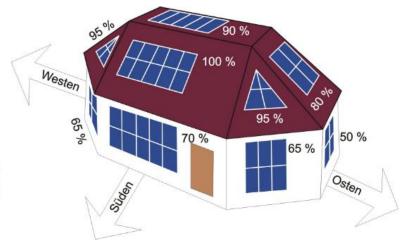
Wie weit sind wir bei der Energiewende?

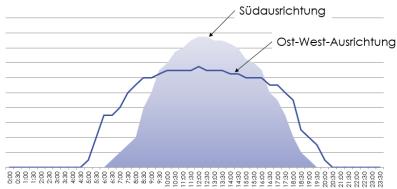


Müller

Deutschland: Ausbaupfad PV bis 2040

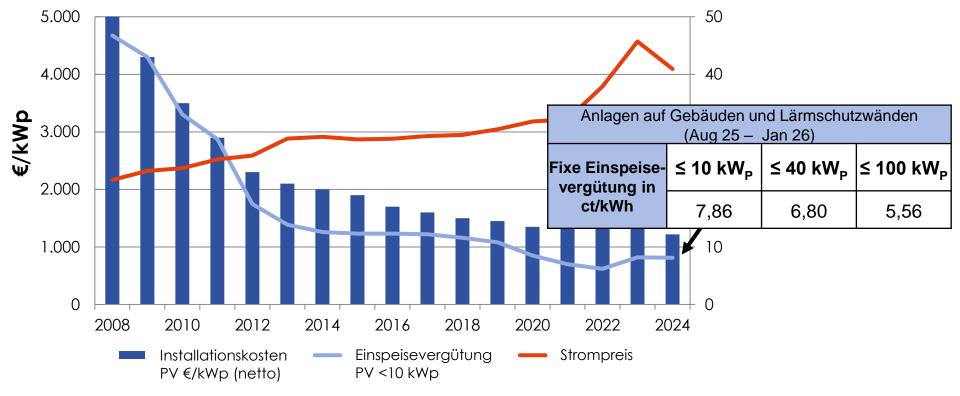
- Für D 2040: Photovoltaik-Leistung soll auf 400 GW_p steigen (aktuell ca. 110 GW_p)
- 200 GW_p auf Gebäude und 200 GW_p auf die Freifläche (aktuell ca. 71 % Dach 29 % FFA)




PV-Erträge

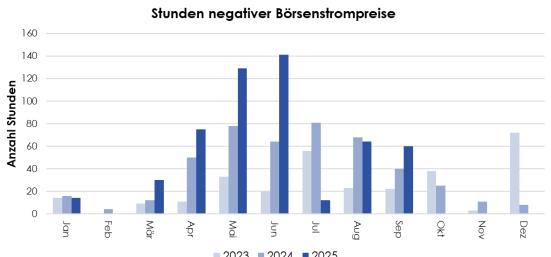
6 Module x 450 $W_P = 2.700 W_P = 2.7 kW_P$

Ertrag in 1 Jahr: ca. 2.700 kWh


Anlagengröße

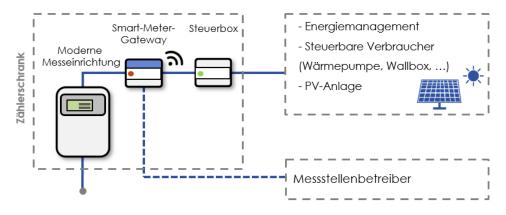
- bei Einfamilienhäusern meist begrenzte Dachflächen → i. d. R. empfehlenswert,
 vorhandene Dachflächen möglichst auszunutzen
- kleine Anlagen haben hohen Anteil an Fixkosten (Planung, Gerüst, AC-Installation,...)
 je größer, desto geringer die Gestehungskosten für Solarstrom
- geringe Erträge im Winterhalbjahr berücksichtigen (70-80 % im Sommerhalbjahr)
- zukünftige Verbraucher mitberücksichtigen: E-Auto, Heizstab, Wärmepumpe,...

EEG-Vergütung für kleine PV-Anlagen



EEG-Regelungen zu negativen Börsenstrompreisen

- Neuanlagen: keine EEG-Förderung in Zeiten negativer Börsenstrompreise
 - Kompensation: Verlängerung des EEG-Vergütungszeitraums in Abhängigkeit von der Häufigkeit negativer Börsenstrompreise ("Förderdauer 20 + X Jahre")
 - solarorientierter Eigenverbrauch, Energiemanagement und Speicherung bei solaren Erzeugungsspitzen werden immer wichtiger!



P 25 W Hs 026

Fernsteuerbarkeit und negative Strompreise

 Netzbetreiber müssen Verbraucher mit PV-Anlagen > 7 kW_P (oder SVE gem. § 14a EnWG) mit "intelligenten Messystemen und einer Steuerungseinrichtung am Netzanschlusspunkt" ausstatten

(<u>"iMSys + Steuerbox</u>")

Vor Einbau iMSys

- Neuanlagen < 25 kW_P:
 Begrenzung am Verknüpfungspunkt auf
 60 % der installierten Leistung
- Neuanlagen ≥ 25 100 kW_P:
 <u>Fernsteuerung durch den Netzbetreiber</u>
 (z. B. Funkrundsteuerempfänger) zusätzlich zur Begrenzung auf 60 %

Ab Einbau iMSys

- bei Anlagen > 7 kW_P:
 zusätzlich Einbau einer <u>Steuerbox</u>
 → Aufhebung der 60 % -Regel
- keine Vergütung bei neg.
 Strompreisen (< 100 kW_P ab dem Folgejahr)

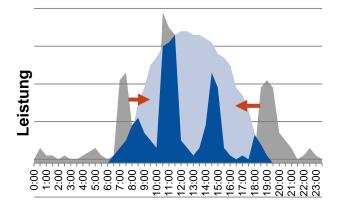
Auswirkungen Leistungsbegrenzung

- Beispiel zur Leistungsbegrenzung
 - Dachanlage mit Volleinspeisung
 - Veränderung der eingespeisten Strommenge im Vergleich zur Situation ohne Leistungsbegrenzung:

Ausrichtung	Süd	Ost-West	
Mit "harter" 60 %- Leistungsbegrenzung des Wechselrichters	bis ca. – 8 %	bis ca. – 4 %	

→ Bei Einsatz von Stromspeichern und EMS sind die Auswirkungen stark begrenzt!

Was erwartet Sie heute?


- Photovoltaik Aktuelles und Rahmenbedingungen
- Stromspeicherung und Sektorenkopplung
- Sonne tanken Solarstrom für die Elektromobilität
- Fazit

Eigenverbrauchssteigerung

Verlagerung von Verbrauch zu Erzeugung

Verbraucher steuern:

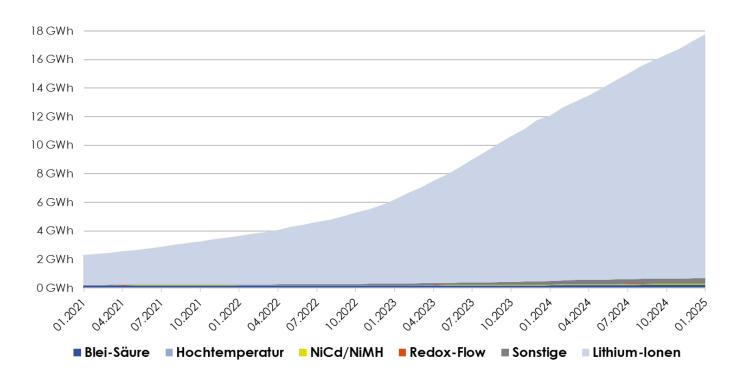
- über EMS
- manuell

(z. B. Waschmaschine, Spülmaschine, steuerbare Verbrauchseinrichtungen)

Elektrifizierung

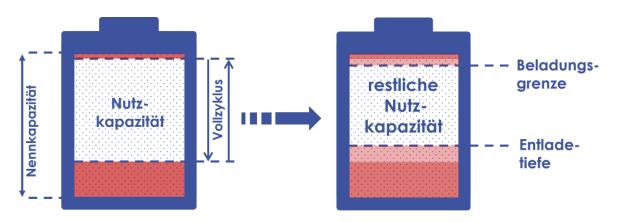
- E-Mobilität
- Wärmepumpe
- Heizstab
- sonstige Geräte (Rasenmäher,...)

Speicherung



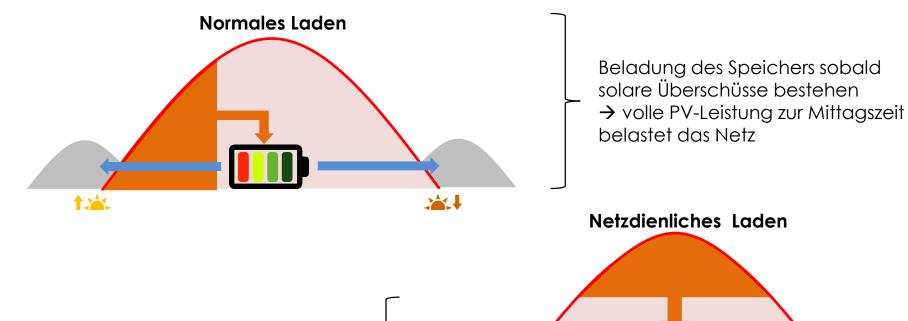
- Stromspeicher
- Wärmespeicher

Batteriespeicher - Zelltechnologie



→ Heute im Heimspeicherbereich LiFePO₄–Zellen dominierend!

Heimspeicher - Alterung


Negative Einflüsse auf Alterung bei Lithium-Speichern:

- Zyklische Alterung: Hohe Lade- und Entladeströme, Laden bei niedrigen Temperaturen,
 Zyklentiefe
- Kalendarische Alterung: Hohe Temperaturen, lange Verweildauern bei hohen Ladezuständen, ...
- Überlagerung von zyklischer und kalendarischer Alterung: Realistische Werte für Lithium-Ionen-Batterien im Heimspeicherbereich bei ca. 15-20 Jahren

Ladestrategien - Netzdienlichkeit

C.A.R.M.E.N.

Quelle: C.A.R.M.E.N. e.V.

erhöht Netzkapazität

Prognosebasierte Beladung
→ reduzierte "Mittagsspitze"

Wie wirtschaftlich ist eine PV-Anlage heute?

Beispiel 1: Photovoltaik

Anlagendaten PV

inst. Leistung: 10 kWpØ Jahresertrag: 9.700 kWh

Stromverbrauch 4.000 kWh Strombezugskosten 30 Cent/kWh

Eigenverbrauch
• EV-Anteil:

1.416 kWh
15 %

• Autarkiegrad: 35 %

Beispiel 1: Photovoltaik (20 + 5 Jahre)

27 % der Einspeisung zu Zeiten negativer Börsenstrompreise

Anlagendaten PV

 inst. Leistung: 10 kWp Ø Jahresertraa: 9.700 kWh

4.000 kWh Stromverbrauch 30 Cent/kWh Strombezugskosten

Eigenverbrauch 1.416 kWh

EV-Anteil: 15 % 35 % Autarkiegrad:

Investitionskosten

1.100 €/kWp PV

 Photovoltaik: 11.000 €

Betriebskosten (inkl. Ersatzbeschaffung)

 PV-Anlage: 154 € p.a.

Einnahmen & Einsparung

474 € p.a. Vergütung*: Einsp. Verbrauch: 425 € p.a.

899 € p.a.

Amortisationsdauer: 14.8 a

Stromgestehungskosten: 6.1 Cent/kWh

Rendite: 6,8 % **Unberücksichtigt:**

- Allgemeine Preissteigerung
- Strompreissteigerung
- Finanzierungskosten

Betrachtungszeitraum 25 Jahre

Foto: C.A.R.M.E.N. e.V.

^{*}Einspeisevergütung: 7,86 Cent/kWh

Und mit Speicher?

Beispiel 2: Photovoltaik mit Speicher (25 Jahre)

23 % der Einspeisung zu Zeiten negativer Börsenstrompreise

Anlagendaten PV

• inst. Leistung: 10 kW_P

Ø Jahresertrag: 9.700 kWh
Nutzkapazität Sp.: 9 kWh (17 a)

Stromverbrauch 4.000 kWh Strombezugskosten 30 Cent/kWh

Eigenverbrauch 3.230 kWh

• EV-Anteil: 34 %

Autarkiegrad**: 76 %

wh ca. 215 Vollands

Amortisationsdauer: 14,2 a

Stromgestehungskosten: 8,8 Cent/kWh

Speicherungskosten: 15,4 Cent/kWh

Rendite: 6,8 %

Investitionskosten

1.300 €/kW_P PV

Photovoltaik: 12.000 €
 Speicher: 4.800 €

Betriebskosten (inkl. Ersatzbeschaffung)

PV-Anlage: 154 € p.a.
 Speicher: 38 € p.a.

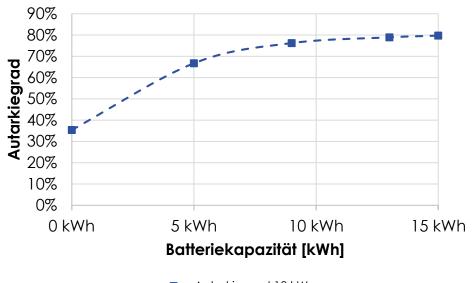
Einnahmen & Einsparung

Vergütung*: 392 € p.a.
 Einsp. Verbrauch: 877 € p.a.
 1.269 € p.a.

Unberücksichtigt:

- Allgemeine Preissteigerung
- Strompreissteigerung
- Finanzierungskosten

Betrachtungszeitraum 25 Jahre, Speicher inkl. 15% Speicherverluste, Speicher-Lebensdauer 17 Jahre



^{*}Einspeisevergütung: 7,86 Cent/kWh

Beispiel 2: Photovoltaik mit Speicher

Vergleich verschiedener Speichergrößen

- ■ - Autarkiegrad 10 kWp

Faustformel

für eine
<u>eigenverbrauchsoptimierte</u>
Auslegung

→ ca. 1 - 2 kWh Nutzkapazität
 pro 1.000 kWh Stromverbrauch
 → bei mind. 1 kW_P PV-Leistung pro kWh Nutzkapazität

Bei Heimspeichern: Spezifische Kosten bei kleinen Speichergrößen beachten!

Richtige Speicherkapazität wählen

Speicher zu groß:

unzureichende Nutzung bei höheren Investitionskosten: geringere Wirtschaftlichkeit

Speicher zu klein:

- höhere spezifische Kosten bei kleineren Speichern
- weiterhin hoher Netzbezug bei hohem Verbrauch

- passend zum Lastprofil (Höhe und Zeiten Stromverbrauch) und der Anlagenleistung
- bei Notstromfunktionalität: höhere Kapazität notwendig
- Abnahme der Nutzkapazität durch Alterung beachten
- zukünftige Nutzungen? (dynamische Tarife,...)
- Erweiterbarkeit prüfen

Beispiel 3: Photovoltaik und E-Auto (25 Jahre)

25 % der Einspeisung zu Zeiten negativer Börsenstrompreise

Anlagendaten PV

 inst. Leistung: 10 kWp Ø Jahresertrag: 9.700 kWh

Stromverbrauch 4.000 kWh + Verbrauch E-Auto** 2.000 kWh Strombezugskosten 30 Cent/kWh

Eigenverbrauch 2.328 kWh

 FV-Anteil: 24 % Autarkiegrad: 39 %

Investitionskosten

1.100 €/kWp PV

 Photovoltaik: 11.000 €

Betriebskosten (inkl. Ersatzbeschaffung)

 PV-Anlage: 154 € p.a.

Einnahmen & Einsparung

 Vergütung*: 435 € p.a. Einsp. Verbrauch: 698 € p.a.

1.133 € p.a.

Amortisationsdauer: 11.2 a

Stromgestehungskosten: 6.1 Cent/kWh

Rendite: 8.7 %

Unberücksichtigt:

- Allaemeine Preissteiaeruna
- Strompreissteigerung
- Finanzierungskosten

^{*}Einspeisevergütung: 7,86 Cent/kWh **E-Auto: 10.000 km/a, 20 kWh/100 km

Power to Heat im Eigenheim

Heizstab

Zusatzheizung im Pufferspeicher – häufig nachrüstbar Primärer Wärmeerzeuger wird insb. im Sommer entlastet Kosten ca. 1.000 € (+ Kosten für EMS)

~ 3:1

Brauchwasser-Wärmepumpe

Innenstehende Luft-Wasser-Wärmepumpen (+ Luft-Temperatur)
Pufferspeicher ca. 200 – 300 I
Kosten ca. 3.000 – 4.000 €

Heizungs-Wärmepumpe

Ansteuerung über EMS, Smart Meter oder Relais am WR Einbindung in Steuerung: "SG ready" Wärmequellen: insb. Außenluft, Grundwasser, Erdreich, Abwärme

~ 2,5-4,5:1

Heizstab + PV

Heizstab

Zusatzheizung im Pufferspeicher – häufig nachrüstbar Primärer Wärmeerzeuger wird insb. im Sommer entlastet Kosten ca. 1.000 € (+ Kosten für EMS)

Vorteile:

- günstige Lösung für Warmwasser und Heizungsunterstützung
- "Nutzen statt abregeln" bei negativen Börsenstrompreisen

Nachteile:

- keine Nutzung von Umweltwärme (Verhältnis Strom:Wärme max. 1:1)
- durch geringe Solarerträge im Winter: Nur eingeschränkt für Heizungsunterstützung nutzbar

Fazit:

✓ Gute Kombination bei Biomasseheizungen
 ▲□ Einsatz nur bei 100% PV-Stromnutzung oder stark negativen Börsenstrompreisen sinnvoll

Beispiel zur WW-Bereitung

Hybride Warmwassererzeugung mit Heizstab(+PV), BWP(+PV) oder Solarthermie?

Alternativen:

1. Heizstab + PV

Ansatz PV: Kalkulatorische Kosten

40 % WW über Heizstab + PV

60 % WW über Heizung zu <u>7,0 ct/kWh</u>

Brauchwasserwärmepumpe (BWP) + PV

Ansatz PV: Kalkulatorische Kosten

90 % WW über PV-Strom

10 % WW über <u>Netzstrom</u>

3. Solarthermie

Dimensionierung für WW-Bereitstellung (ca. 6 m² Modulfläche)

60 % WW über ST

- 40 % WW über Heizung zu <u>7,0 ct/kWh</u>

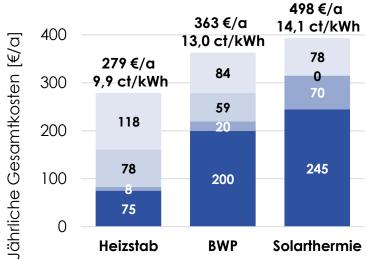
Rahmenbedingungen:

Betrachtungszeitraum: 20 Jahre

jährl. WW-Wärmebedarf: 2.800 kWh/a

Netzstrompreis: 30 ct/kWh

Kalkulatorische Kosten PV: **7,0 ct/kWh**

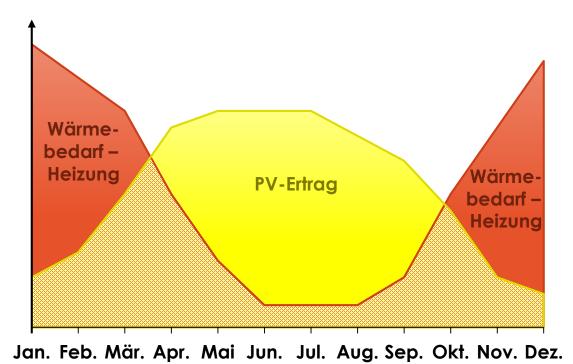


Beispiel zur WW-Bereitung

	Heizstab (+PV)	BWP (+PV)	Solar- thermie
Investitionskosten Komponente	1.500 €	4.000 €	7.000 €
Förderung	-	_	2.100 €
Verhältnis Strom in Wärme	1:1	1:3	
angenommene solare Deckung	40 %	90 %	60 %
jährl. PV-Strombedarf	1.120 kWh	840 kWh	

Fazit:

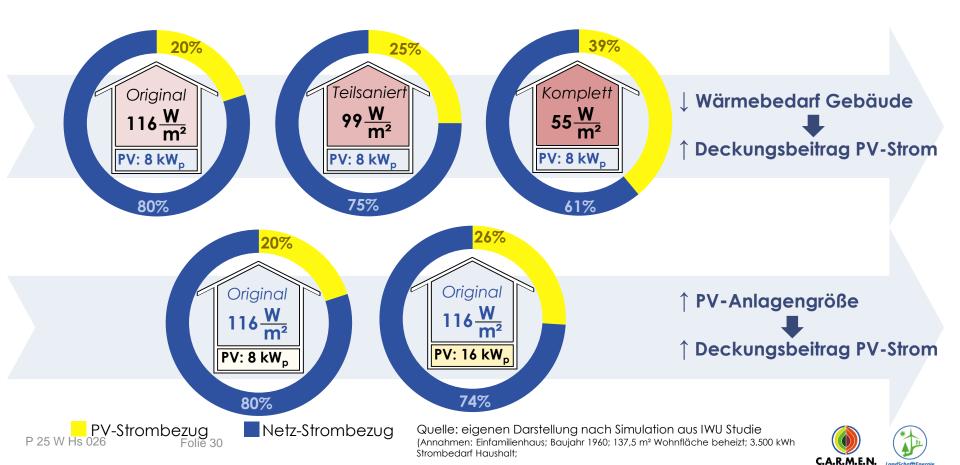
- Heizstab bei kleineren WW-Verbräuchen am wirtschaftlichsten (z. B. EFH)
- BWP mit derzeitigen Kosten bei größerem WW-Bedarf wirtschaftlicher
- Solarthermie bei großem WW-Bedarf oder zur Heizungsunterstützung mit geringeren spez. Kosten


- bedarfsgebundene Kosten (Heizung bzw. Netzstrom)
- bedarfsgebundene Kosten (PV-Strom)
- betriebsgebundene Kosten
- kapitalgebundene Kosten (Förderung berücksichtig)

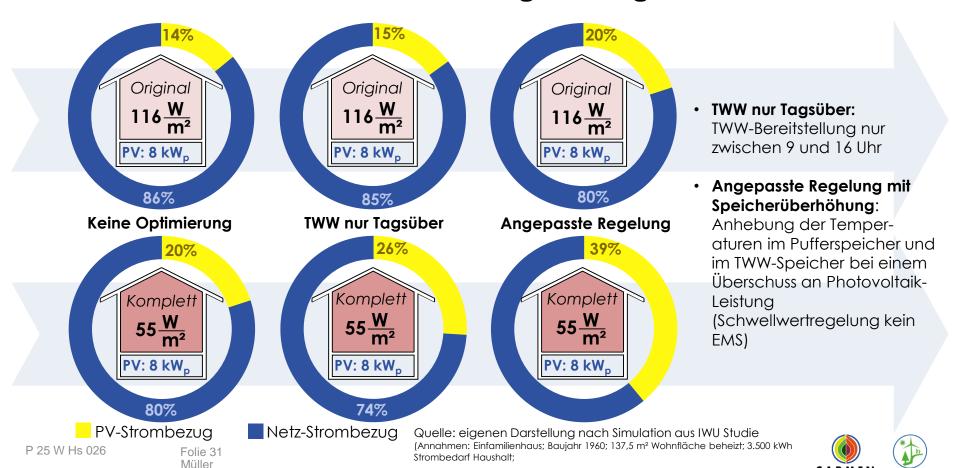
Annahme: Berücksichtigung der Kosten für PV über kalkulatorische Kosten (Vergütung), WW-Bedarf: 2.800 kWh/a, Rest zur solaren Bereitstellung über Netzstrom (BWP) oder vorhandene Heizung (Heizstab und Solarthermie), Betrachtungszeitraum: 20 Jahre

PV-Stromnutzung mit Wärmepumpe

 Sonne und heizen passen nicht optimal zusammen


 Potenzial vor allem in Übergangsmonaten bzw. beim Kühlen im Sommer

Eigenverbrauchs-steigerung
 Ø 15-20%



Einflussfaktoren auf solare Deckungsbeiträge

Einflussfaktoren auf solare Deckungsbeiträge

Was erwartet Sie heute?

- Photovoltaik Aktuelles und Rahmenbedingungen
- Stromspeicherung und Sektorenkopplung
- Sonne tanken Solarstrom für die Elektromobilität
- Fazit

Antriebstechnologie Elektromobilität – Vorteile

- lokal abgasfrei und leise
- technisch einfacher
- hoher Wirkungsgrad
- kleines Kraftpaket
- ökonomisch (besonders mit PV-Strom)
- bessere CO₂-Bilanz als Verbrenner

Reichweite aus Datenblatt berechnen

- Akkugröße Pkw: ca. 20 bis 100 kWh
- WLTP-Energiebedarf: ca. 15-20 kWh/100 km (inkl. ~15% Ladeverluste)

Reichweite =
$$\frac{Akkukapazität}{Strombedarf}$$
 z. B. $\frac{60 \text{ kWh}}{15 \text{ kWh}/100 \text{km}}$ = 400 km

- in der Praxis weniger Reichweite
 - → Sommer ca. 20 % **Ψ**
 - → Winter ca. 30 % **Ψ**

Laden und Ladestecker

Normalladen Typ2

= AC - Wechselstrom bis 22 kW

Folie 36 Haas

Laden und Ladestecker

Normalladen Typ2

= AC - Wechselstrom bis 22 kW

Folie 37

Schnellladen CCS

= DC - Gleichstromab 50 kW bis derzeit 400 kW

Private Ladelösungen: Wallbox

verschiedene Ladeleistungen einstellbar, schnellere Ladung,
 Schutz des Hausnetzes

- privat sinnvoll: AC bis 11 kW
- Onboard-Ladeleistung entscheidend
- Anmeldepflicht beim Netzbetreiber
- § 14a EnWG ready
- bei PV-Eigenverbrauch am besten mit EMS
 - → C.A.R.M.E.N.-Marktübersicht solarunterstützte Wallboxen
 - → PV-Magazine Wallbox-Übersicht

Ladegeschwindigkeit

Beispiel Akkugröße Pkw: 60 kWh

AC mit 11 kW

zu ladende Energie Ladeleistung

Laden von 20% auf 100% $\frac{48 \, kWh}{11 \, kW} = 4 \, \text{h} \, 22 \, \text{min}$

Ladegeschwindigkeit

Beispiel Akkugröße Pkw: 60 kWh

AC mit 11 kW

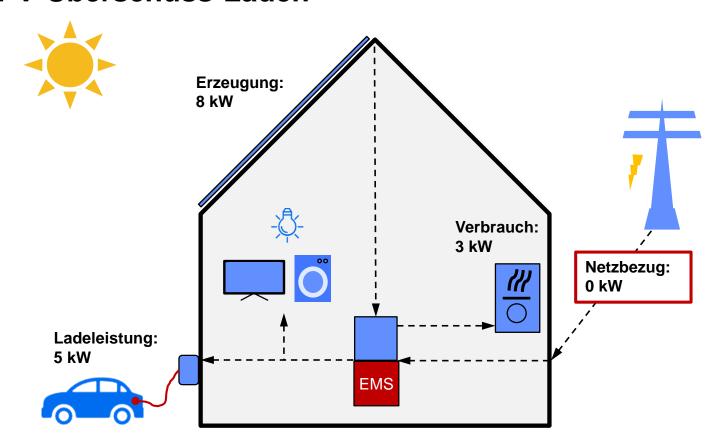
DC mit 100 kW (bis 80%)

zu ladende Energie Ladeleistung

Laden von 20% auf 100% $\frac{48 \, kWh}{11 \, kW} = 4 \, \text{h} \, 22 \, \text{min}$

Laden von 20 auf 80%

$$\frac{36 \, kWh}{100 \, kW} = 22 \, \text{min}$$



Wie kann ich Strom aus eigener PV für E-Auto intelligent nutzen?

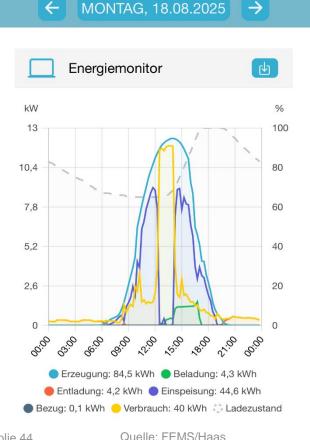
PV-Überschuss-Laden

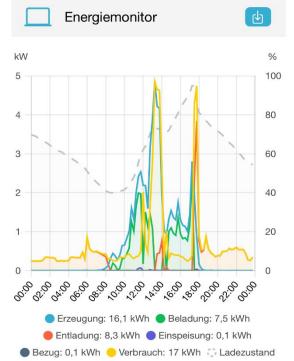
EMS - Energiemanager

Was macht das (Home)-Energie-Management-System (EMS oder HEMS)?

- Misst kontinuierlich:
 - Erzeugung PV
 - Verbrauch im Haus
- Steuert dynamisch:
 - Wallbox
 - Wärmepumpe
 - und andere steuerbare Lasten
- Steigert den Eigenverbrauch!

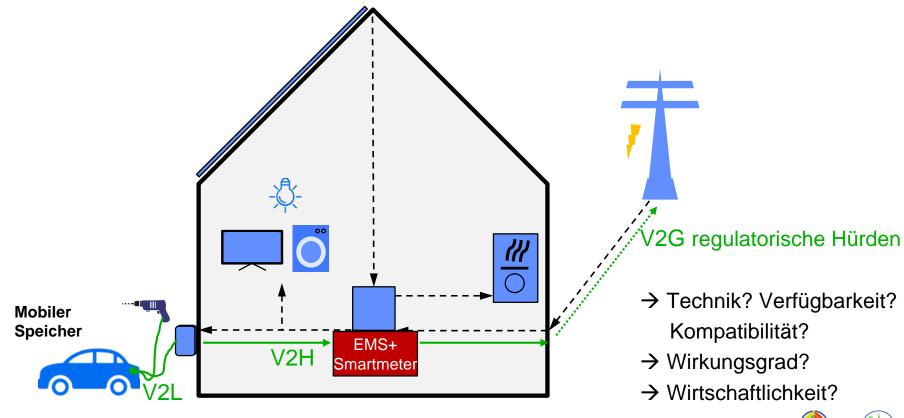
Folie 43





Beispiel – intelligentes, netzdienliches Überschussladen mit

Speicher



Die Zukunft ist bidirektional

Temporäres "Dimmen" von steuerbaren Verbrauchern

Energiewirtschaftsgesetz § 14a: Leistungsreduktion (4,2 kW garantiert) <u>steuerbarer</u> Anlagen wird ermöglicht → dafür Reduzierung des Netzentgelts

Modul 1

pauschaler Rabatt auf Netzentgelt: 110€ - 190€ im Jahr

Modul 2

Reduzierung des Arbeitspreises des Netzentgelts um 60 % (extra Zähler nötig)

Empfehlung: neue Wallboxen sollten §14a ready sein!

Modul 3

zeitvariables
Netzentgelt möglich
(in Kombination mit
Modul 1)

Für vor 2024 eingebaute Verbraucher, gibt es eine Übergangsfrist bis 31.12.2028.
 Verbraucher ohne Steuerung sind ausgenommen.

Energiekosten pro 100 km

Folie 47

Haas

Gesamtkostenbetrachtung LIVE

EMIL Elektromobilitätsrechner*

Vergleichen Sie Autos mit Verbrennungsmotoren mit E-PKWs. Ziehen Sie Schlüsse über den Energieeinsatz, die Ökobilanz und die Kosten der Fahrzeuge über die gesamte Nutzungsdauer.

Wie wollen Sie die E-Mobilitätsberechnung durchführen?

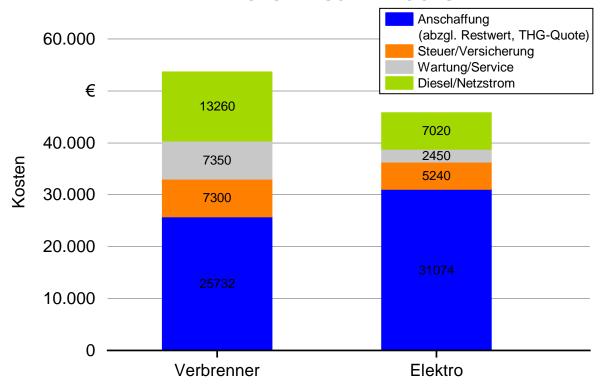
Basis-Modus

In diesem Modus werden vorwiegend Standard-Parameter zur Berechnung verwendet. Dadurch bekommen Sie einen schnellen ersten Überblick über die finanziellen und ökologischen Auswirkungen der Fahrzeuge.

Erweiterter Eingabemodus

In diesem erweiterten Modus werden alle Eingabeparameter dargestellt und können von Ihnen individuell abgeändert werden.

Gesamtkostenbetrachtung


Differenz ca. 7.700 €

Mittelklassewagen

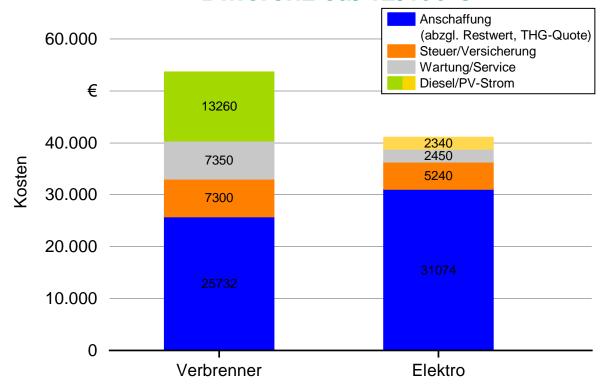
Anschaffung 30.000 vs. 36.000 €
Batterie 60 kWh
Dieselkosten 1,70 €/I
Stromkosten 0,30 €/kWh (Netz)
Wartung/Service (elektrisch 1/3)

Wartung/Service (elektrisch 1/3)
Steuer/Versicherung (elektrisch 2/3)
10 Jahre á 13.000 km

Verbrauch: 6 I Diesel/100 km 18 kWh Strom/100 km

Gesamtkostenbetrachtung

Differenz ca. 12.400 €


Mittelklassewagen

Anschaffung 30.000 vs. 36.000 €
Batterie 60 kWh
Dieselkosten 1,70 €/I

Stromkosten 0,10 €/kWh (PV)

Wartung/Service (elektrisch 1/3) Steuer/Versicherung (elektrisch 2/3) 10 Jahre á 13.000 km

Verbrauch: 6 I Diesel/100 km 18 kWh Strom/100 km

Finanzielle Anreize

- Kfz-Steuerbefreiung (soll bleiben)
- E-Auto-Förderung für mittlere und kleine Einkommen (Vorschlag)
- E-Dienstwagen-Förderung
- Prämie aufgrund THG-Quote
- § 14a EnWG netzorientierte Steuerung von sVE:

Quelle: thenounproject.com

- → Rabatt auf Ladestrom
- kostenloses Parken in Bayern ab 01.04.2025

PV und E-Mobilität – warum passt das so gut?

Energiewende im Kleinen:

- Strom selbst erzeugen
- Eigenverbrauch erhöhen
- Fahrtkosten sparen
- smarte Lösungen

Folie 53

Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe

Rita Haas und Julian Müller LandSchafftEnergie

Tel.: +49 (0) 9421 300-269

E-Mail: landschafftenergie@tfz.bayern.de

Disclaimer

Dieses PDF-Dokument wird den Teilnehmenden des Vortrages zur Verfügung gestellt und ist ausdrücklich nur für den internen Gebrauch

bestimmt. Dieses Dokument darf **nicht** online gestellt, weitergereicht oder ganz oder in Teilen weiterverwendet werden – dies betrifft insbesondere die hier enthaltenen Fotos, Bilder und Grafiken.

