

Wärmepumpe in der Sanierung

Datum:

Wie komme ich denn überhaupt auf die richtige Wärmepumpe?

Faustformeln für die Luft-Wärmepumpen?

Wenn es mal schnell gehen muss

Überschlägige Formeln für die Praxis - Wärmepumpe:

- 250 Liter Öl = 1 kW Wärmepumpe (Wärmeleistung)
- 230 m³ Gas = 1 kW Wärmepumpe (Wärmeleistung)
- 1kW Luft-WP sollte mit Heizungs-Puffer installiert sein:

10 Liter Heizungswasser (Abtauenergie)

20 – 30 Liter Heizungswasser (optimale Laufzeit)

Hinweis: WP können nur 3-4 mal pro Stunde einschalten

– COP sollte bei:

A2/W35 größer 4 sein A7/W35 größer 5 sein

– Heizen mit PV:

WP mit hohen Vorlauftemperaturen bevorzugen (min 60-70°C)

Pufferspeicher mit 800 – 1000 Liter

Reihenfolge: erst WP dann Elektroheizstab

Aber für mich ist das nichts, ich habe ja Heizkörper...

Was bestimmt den Verbrauch einer Heizungsanlage?

Die Systemtemperaturen der Heizung

Heizkörper oder Flächenheizung (Fußboden-, Wand- oder Deckenheizung)

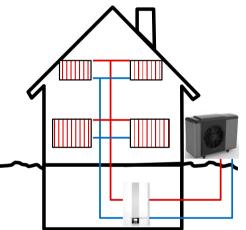
- Heizkörper brauchen:
 - Heizwassertemperaturen zwischen 30 und 55°C. Selten darüber hinaus!
 - in der Hauptheizperiode im Frühjahr und Herbst reichen oftmals 40°C bei Heizkörpern
- Flächenheizungen brauchen geringere Temperaturen:
 - Heizwassertemperaturen zwischen 25 und 40°C. Selten darüber hinaus
- Experten-Tipp bei Luft-Wärmepumpen:
 Jedes Grad zählt! 1°C weniger Heizwasser spart 2-2,5%
 Ein Austausch oder Ergänzung von Heizkörpern oder
 Nachrüstung von Flächenheizungen hilft beim Sparen!
 Gerade bei Heizkörpern sind ca. 10°C möglich → 20-25% gespart

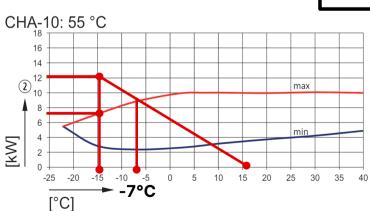
Ok, ich habe 12 kW Heizlast, bei mir geht die 10er ja nicht...

Mögliche Lösungen mit Luft-Wärmepumpe?

Wärmepumpe und Elektroheizstab – Monoenergetischer Betrieb

Mögliche Lösungen - Analyse


CHA-10: 12kW Bedarf

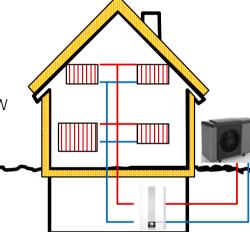

 Bei 55°C liegt der Bivalenzpunkt bei -7°C

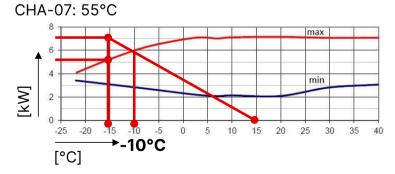
Leistung WP bei Norm-AT: 7kW

 Ein Mono-Energetischer Betrieb ist möglich

Kritische Heizkörper angepasst

Mögliche Lösungen - Analyse


- CHA-07: **6,5kW** Bedarf


 Bei 55°C liegt der Bivalenzpunkt bei -10°C

Leistung WP bei Norm-AT: 5,2kW

Ein Mono-Energetischer Betrieb ist möglich

- Kritische Heizkörper angepasst

Welche Kosten entstehen dann für mich pro Jahr?

Mögliche Lösungen mit Luft-Wärmepumpe?

Wärmepumpe und Elektroheizstab – Monoenergetischer Betrieb

Möglicher Verbrauch: Prognose über JAZ

2.700m³ Gas pro Jahr =
 27.000kWh pro Jahr

0,98 Deckungsanteil

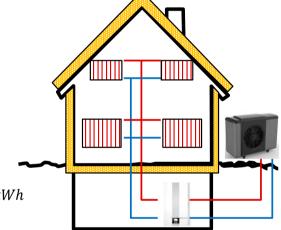
3,7 Gesamtjahresarbeitszahl

 $27.000kWh\ x\ 0.98\ (WP)\ = 26.460kWh$

$$\frac{26.460kWh (W"arme)}{3,7 (JAZ)} = 7.151kWh WP$$

 $27.000kWh \times 0.02 (EStab) = 540kWh$

$$7.151kWh(WP) + 540kWh(EStab) = 7.691kWh/a$$


Möglicher Verbrauch: Prognose JAZ

1.500m³ Gas pro Jahr =
 15.000kWh pro Jahr

1,00 Deckungsanteil

3,8 Gesamtjahresarbeitszahl

 $15.000kWh \ x \ 1,00 \ (WP) = 15.000kWh$

$$\frac{15.000kWh (W\ddot{a}rme)}{3.8 (JAZ)} = 3.947kWh WP$$

 $27.000kWh \ x \ 0.00 \ (EStab) = 0kWh$

3.947kWh (WP) + 0kWh (EStab) = 3.947kWh/a

Ist ein Gerät mit Kältemittel überhaupt umweltverträglich?

Verschiedene Kältemittel

Umwelteigenschaften – GWP (Global Warming Potential)

Kältemittel und deren Erderwärmung

- Sollten Kältemittel entweichen werden sie zur Erderwärmung beitragen
- Dies sollte nie (selten) passieren
- Passiert es trotzdem ist R290 besser, als R410A

Vergleich zur Gasheizung

- 1kWh Erdgas entspricht 240g/kWh CO₂
- 1.000m³ Erdgas "erzeugt" 2.400kg CO₂
- 1kg R410A entspricht 2.088kg CO₂
- 1kg R290 entspricht 3kg CO₂
- GEG Anlage 9: Treibhausgasemissionen Erdgas CO₂ Äquivalent: 240g/kWh
- 1.000m³ Erdgas entspricht ca. 10.000kWh x 240g/kWh = 2.400kg CO₂

Kältemittelbezeichnung	GWP
CO ₂	1
R290 (Propan)	3
R1234yf	4
R32	675
R134A	1430
R407C	1774
R410A	2088

R290 ist natürlichen Ursprungs R290 sehr wenig Erderwärmung

Und welches Kältemittel ist dann das Beste?

Verschiedene Kältemittel

Einteilung der Kältemittel nach DIN EN 378

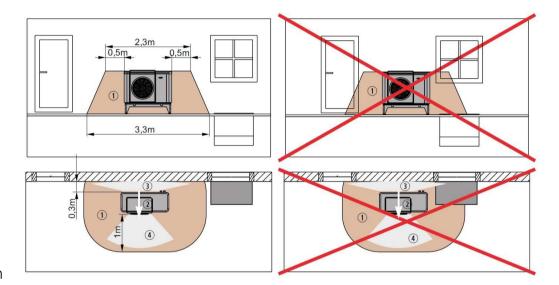
R290 (Propan) ist sehr zukunftssicher

Sehr geringe Erderwärmung (GWP = 3)

- brennbar
 - → Aufstellungshinweise
 - → Kühlschrank/Wäschetrockner haben R290 (<150g)
 - → größere Leistungen brauchen mehr Kältemittel (Außenaufstellung)
 - → natürlichen Ursprungs

Gibt es dann etwas bei der Aufstellung zu beachten?

Besonderheiten bei natürlichem Kältemittel R290 (Propan)


Schutzbereich / Aufstellung

Das zukunftssichere Kältemittel R290 ist

- Schwerer als Luft
- fließt wie Wasser

Ein Teil der Sicherheitstechnik

- Darf nicht ins Gebäude gelangen
 z.B. Fenster, Türen und Lichtschächte in unmittelbarer Nähe
- Darf nicht in die Kanalisation gelangen
 - z.B. Regenwasserfall-Rohre, Abwasser- und Entwässerungsleitungen

Ich habe aber schon oft gehört, dass es Probleme mit der Lautstärke gibt?!

Schall und Geräusche bei Wärmepumpen

Schallleistung-/Schalldruckpegel – Achtung beim direkten Vergleich

Welche Schall-Leistung? CHA-07

Schallleistungspegel im Tagbetrieb
 58dB(A)

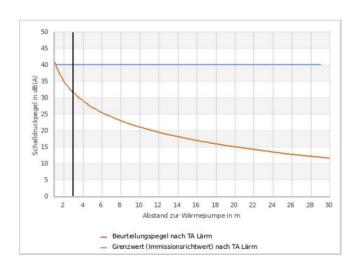
Schallleistungspegel ErP: 52dB(A)

Schallleistungspegel im reduzierten Betrieb 49dB(A)

Angaben bei der Schallberechnung – Schall-Druck?

Schalldruckpegel: 31dB(A)

Welche Entfernung? → 3 Meter


Aufstellung? → Freifeld

Abschirmung? → Sichtkontakt

Nachtbetrieb? → Nachtsleiselauf

...

- Fazit:
 - → Die CHA ist eine der leisesten Wärmepumpen auf dem Markt!

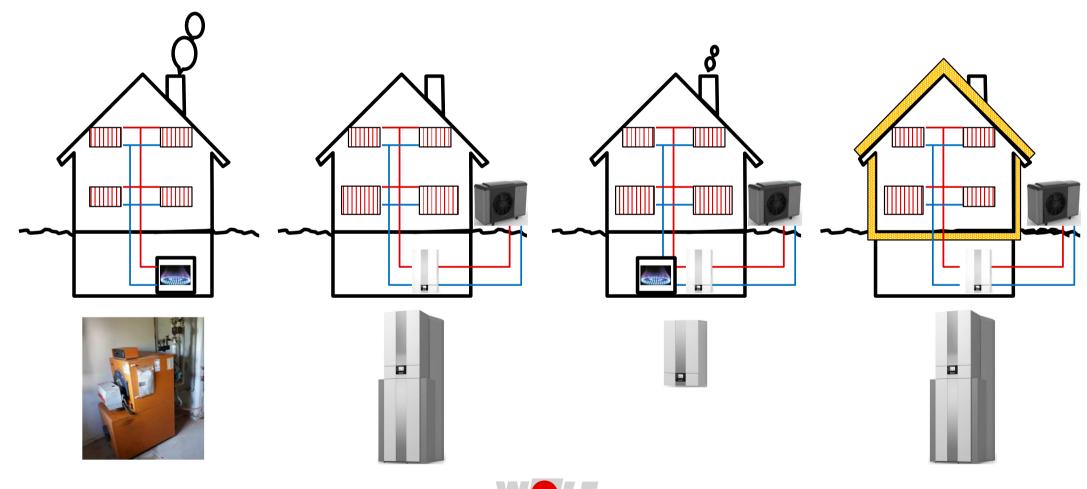
Und was beeinflusst dann den Schall?

Schall und Geräusche bei Wärmepumpen

Schallleistung-/Schalldruckpegel

Einfluss auf den Schalldruckpegel

- Aufstellort z.B. Freifeld
- Distanz zur Quelle z.B. 3 Meter
- Nischen/Wände z.B. Reflektion
- Abschirmung z.B. Sichtkontakt


Aufstellort $K_0 = 3 \text{ dB(A)}$ Freifeld $K_0 = 6 \text{ dB}(A)$ An der Wand $K_0 = 9 \text{ dB(A)}$ Nischen

Kann dann eine Wärmepumpe überall eingesetzt werden?

Jedes Gebäude kann mit Wärmepumpe versorgt werden

Wärmepumpe kann Öl-/Gasheizungen ersetzen oder "kräftig" Unterstützen

Jedes Gebäude kann mit Wärmepumpe versorgt werden

Wärmepumpe kann Öl-/Gasheizungen ersetzen oder "kräftig" Unterstützen

Disclaimer // Die vorliegende Präsentation ist vom jeweiligen Verfasser durch das Urheberrecht geschützt. Nachdruck, Vervielfältigung, Weiterbearbeitung – auch auszugsweise – und / oder Weiterleitung an Dritte ist urheberrechtlich nicht gestattet. Obwohl die Präsentation mit größter Sorgfalt erstellt wurde, besteht kein Anspruch auf sachliche Richtigkeit, Vollständigkeit und/oder Aktualität.

Die Wärmepumpe und ihre physikalischen Bedingungen

"Spielregeln von Wärmepumpen"

Volumenströme und Temperaturspreizung

- "dicke" Rohre erforderlich
- Trennspeicher oder Überströmventil

Wenig Starts pro Stunde

- Dimensionierung der Wärmepumpe
- Modulierende Wärmepumpen von Vorteil (Modulationsbereich)
- Puffer in vielen Fällen nötig

Luftwärmepumpen müssen abtauen

- Vereisung bereits ab ca. 10°C Außentemperatur möglich
- Die Energie wird von einem Puffer geliefert und/oder aus dem Gebäude (z.B. Fußbodenheizung)
- Notabtauung über den Elektroheizstab

Volumenströme und Temperaturspreizung

- hohe Volumenströme → Mindestvolumenstrom
- Niedrige Temperaturspreizungen vereinfacht: 5Kelvin

Wenig Starts pro Stunde

- Wärmepumpen können "nur" 3-4 mal pro Stunde starten
- Eine Laufzeitoptimierung (Mindestlaufzeit) ist wünschenswert
- Wenig Laufzeit und lange Pausen → wenig Wärme
- Sperre durch den Energieversorger (EVU-Sperre)

Luftwärmepumpen müssen abtauen

- Luft kühlt sich durch den Wärmeentzug über den Verdampfer ab.
 Dadurch kommt es zur Kondensatbildung.
 Dieses Wasser wird am Verdampfer vereisen (<0°C).
 - → Abtauung erforderlich → Energie wird bereitgestellt

Brauche ich dann eigentlich immer einen Puffer?

Und was ist dann die beste Lösung?

Die Wärmepumpe und ihre physikalischen Bedingungen

"Spielregeln von Wärmepumpen"

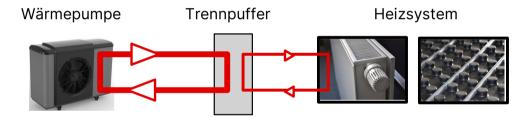
Volumenströme und Temperaturspreizung

"dicke" Rohre erforderlich → nur bis zum Trennspeicher (**)

Trennspeicher → des Wärmpumpen Liebling (**)

Wenig Starts pro Stunde

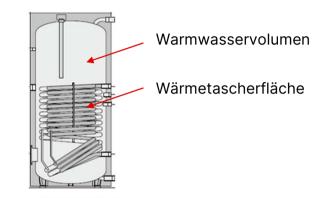
- Dimensionierung der Wärmepumpe → ungefähr ©
- Modulierende Wärmepumpen von Vorteil (Modulationsbereich)
- Puffer in vielen Fällen nötig → Problemlöser (**)



Luftwärmepumpen müssen abtauen

- Vereisung bereits ab ca. 10°C Außentemperatur möglich
- Die Energie wird von einem Puffer geliefert → beste Lösung nicht aus dem Gebäude (z.B. Fußbodenheizung)
- Notabtauung über den Elektroheizstab → nicht nötig

Lösung 1: Trennspeicher → ideal


Ich habe noch einen relativ neuen TWW-Speicher, der geht ja noch oder?

Die Wärmepumpe und ihre physikalischen Bedingungen

"Spielregeln von Wärmepumpen"

Trinkwasserspeicher/Warmwasserspeicher

- Trinkwasserspeicher benötigen große Wärmetauscherflächen für die Wärmeübertragung
 - → 1kW Wärmepumpen → Tauscherfläche 0,25 bis 0,35m²
- Sind meistens "eine Nummer" größer
 - → wegen niedrigerer Warmwassertemperatur mehr Volumen
- Die Trinkwasser-Hygiene sollte nicht vernachlässigt werden
 - → 60°C oder mehr hält Keime "in Schach"

Wolf SEW-2-200	Anderes Fabrikat
Warmwasservolumen 200l	2001
Wärmetauscherfläche: 2m²	0,9m²

Disclaimer // Die vorliegende Präsentation ist vom jeweiligen Verfasser durch das Urheberrecht geschützt. Nachdruck, Vervielfältigung, Weiterbearbeitung – auch auszugsweise – und / oder Weiterleitung an Dritte ist urheberrechtlich nicht gestattet. Obwohl die Präsentation mit größter Sorgfalt erstellt wurde, besteht kein Anspruch auf sachliche Richtigkeit, Vollständigkeit und/oder Aktualität.